Inscrição na biblioteca: Guest

ISSN Online: 2377-424X

ISBN CD: 1-56700-226-9

ISBN Online: 1-56700-225-0

International Heat Transfer Conference 13
August, 13-18, 2006, Sydney, Australia

EXPERIMENTAL AND NUMERICAL CHARACTERIZATION OF TRANSIENT INSERETION OF HEAT FLUX GAGES IN A CYLINDRICAL BLACK BODY CAVITY AT 1100 °C

Get access (open in a dialog) DOI: 10.1615/IHTC13.p21.180
12 pages

Resumo

Initial transient thermal models have been developed to simulate a heat flux gage calibration process capable of generating high heat flux levels of interest to reciprocating and gas turbine engine industries as well as the aerospace industry. These transient models are based on existing, experimentally validated, steady state models of the cylindrical blackbody calibration system. The steady state models were modified to include insertion of a heat flux gage into the hot zone of the calibration system and time varying electrical current passing through the resistance heated blackbody. Heat fluxes computed using the initial transient models were compared to experimental measurements. The calculated and measured transient heat fluxes were within 5% indicating that the major physical phenomena in the transient calibration had been captured by the models. The predicted and measured transient heat fluxes were also compared at two different gage insertion depths. These results indicated that there is an optimum insertion position which maximizes heat flux and minimizes cavity disturbance.