Customer Login Shopping Cart
Library Subscription: Guest
Home Archives Thermal Letter Officers Future meetings Assembly for International Heat Transfer Conferences

ISBN : 0-89116-559-2

International Heat Transfer Conference 8
1986, 17-22 August, San Francisco, USA

STABILITY OF NATURAL CONVECTION IN A SHALLOW CAVITY

Get access DOI: 10.1615/IHTC8.3110
pages 1539-1544

Abstract

The stability of natural convection in a shallow cavity is presented. The flow is two dimensional and is driven by a horizontal temperature gradient between isothermal vertical side walls. The top and bottom boundaries are taken to be highly conducting.
The eigenvalue problem arising from the linear stability theory is solved pseudospectrally by Chebyshev polynomials. The critical wavelength and Grashof number is determined for a set of Prandtl numbers in a wide range. For Pr < 0.14 the shear instability leads to stationary transverse cells; for higher values of Pr the instability is a convection type, and it sets in as oscillating longitudinal rolls in the range 0.14 < Pr < 0.45, and as stationary longitudinal rolls for larger Prandtl numbers. The energy transfer from the base flow and the buoyancy field to the disturbance kinetic energy is presented to obtain a physical interpretation of the reasons for the instability.
Home Archives Thermal Letter Officers Future meetings Assembly for International Heat Transfer Conferences English Русский 中文 Português Spain French German Help Contact Us Back to Begell House