Inscrição na biblioteca: Guest

ISSN Online: 2377-424X

ISBN Print: 978-1-56700-474-8

ISBN Online: 978-1-56700-473-1

International Heat Transfer Conference 16
August, 10-15, 2018, Beijing, China

LASER BEAM WELDING OF MARAGING STEEL 250 JOINTS EXPERIMENTAL AND ANALYTICAL THERMAL RESEARCH

Get access (open in a dialog) DOI: 10.1615/IHTC16.mmp.022738
pages 5677-5687

Resumo

Maraging steel is widely used in the aerospace industry due to its high tensile and ultimate strength. In many applications, it is required to weld parts to an assembly. The common welding process for maraging steel is Gas Metal Arc Welding (GMAW) and Electron Beam Welding (EBW). During the last two decades, the use of laser source for welding has increased rapidly, however there is almost no information in the literature on laser welding of maraging steel 250. Among the advantages of the laser welding process are: concentrated heat flux during welding, small heat affected zone, deep penetration, and low residual stress. Therefore, it may be feasible to weld in the vicinity of heat-sensitive components. The aim of this work is to explore and define the welding parameters, and to ensure no thermal damage to sensitive components. Welding temperatures were calculated analytically and numerically, and data was measured and compared with the calculated results. In addition, the mechanical properties of the welded joint, such as tension strength, heat affected zone, and elongation, were measured. The experimental tests were conducted on maraging steel 250. The numerical computations were performed with the commercial simulation software Simufact Welding. Simufact Welding was used for both deep and shallow penetration weld models. The results indicate good matching between the predicted analytical transient temperatures and the measured temperatures around the weld seam. The techniques developed in the study allow predicting the heat distribution during laser welding of maraging steel. Evaluation and validation of temperature distribution in the vicinity of a laser beam welding (LBW) weld is the main focus of our study.